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Overview

Linear algebra is a branch of mathematics which treats the common
properties of algebraic systems which consist of a set, together with a
reasonable notion of a “linear combination” of elements in the set.

We shall define the mathematical object, called a “vector space“ which is
a composite object consisting of

a field of “scalars”,

a set of “vectors”,

and two operations (addition and scalar multiplication) with certain
special properties.

We discuss properties of vectors spaces and examples in two lectures.
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Fields

Definition 1.

A nonemtpy set F has two operations as follows. The first operation,
called addition, associates with each pair of elements α, β in F an
element (α + β) in F ; the second operation, called multiplication,
associates with each pair α, β an element αβ in F ; and these two
operations satisfy the following nine rules of algebra given below.

1. Addition is commutative : α + β = β + α, for all α and β in F .

2. Addition is associative : α+ (β + γ) = (α+ β) + γ for all α, β, and γ
in F .

3. There is a unique element 0 (zero, or, additive identity) in F such
that α + 0 = α, for every α in F .

4. To each α in F there corresponds a unique element (−α) in F such
that α + (−α) = 0.
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Fields

Definition 2 (contd . . .).

5. Multiplication is commutative : αβ = βα for all α and β in F .

6. Multiplication is associative : α(βγ) = (αβ)γ for all α, β, and γ in F .

7. There is a unique non-zero element 1 (one, or, multiplicative identity)
in F such that α1 = α, for every α in F .

8. To each non-zero α in F there corresponds a unique element α−1 (or
1/α) in F such that αα−1 = 1.

9. Multiplication distributes over addition; that is, α(β + γ) = αβ + αγ,
for all α, β, and γ in F .

The set F , together with these two operations, is called a field.

The set {0, 1}, the set Q of rational numbers, the set R of real numbers
and the set C of complex numbers are fields.
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Fields

Example 3.

With the usual operations of addition and multiplication, the set C of
complex numbers is a field, as is the set R of real numbers.

Notation

We shall use the word “scalar” to represent any element from a field F .

Definition 4.

A subfield S of the field F is itself a field under the operations of addition
and multiplication defined for F .

The set {0, 1} is a subfield of R.
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Vector Spaces

We give below the definition of a vector space over a general field. The
main reason for this is that vector spaces over finite fields are of great
interest in Computer Science, Coding Theory, Combinatorics, Design of
Experiments and Abstract Algebra; vector spaces over the field of rational
numbers are useful in Number Theory and Design of Experiments and
vector spaces over the field of complex numbers are needed for the study
of eigenvalues. Thus vector spaces over fields other than R are useful in
many contexts.

Besides, the theory of vector spaces over a general field is no more
complicated than that over R. So throughout the course, we consider
vector spaces over a general field. However, many important examples of
vector spaces take the field to be R or C and we would not lose much by
making this assumption. In fact, for easy viualization, one can take the
field to be R in most cases.
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Vector Spaces

Definition 5.

A vector space (or linear space) consists of the following :

1. a field F of scalars ;

2. a set V of objects, called vectors (reason for calling “vectors” will be
discussed later) ;

3. a rule (or operation), called vector addition, which associates with
each pair of vectors x , y in V a vector x + y in V , called the sum of x
and y , in such a way that

(a) addition is commutative, x + y = y + x ;
(b) addition is associative, x + (y + z) = (x + y) + z ;
(c) there is a unique vector 0 in V , called the zero vector, such that

x + 0 = x for all x in V ;
(d) for each vector x in V there is a unique vector −x in V such that

x + (−x) = 0 (−x is called the negative of x) ;
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Vector Spaces

Definition 6 (contd . . .).

4. a rule (or operation), called scalar multiplication, which associates
with each scalar α in F and vector x in V a vector αx in V , called
the product of α and x , in such a way that

(a) 1x = x for every x in V ;
(b) (αβ)x = α(βx) ;
(c) α(x + y) = αx + αy ;
(d) (α + β)x = αx + βx .

F itself is called the base field or ground field of the vector space.

We adopt the following standard notation : x + (−y) is written as x − y
for all x , y ∈ V and for α ∈ F and x ∈ V we write αx for α.x .
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Vector Spaces

A real (respectively complex) vector space is a vector space over R
(respectively C). Note that C with the usual addition and multiplication of
a real number with a complex number, can be considered to be a real
vector space.

Notation

We will normally use lower case Roman letters (like x , y , x1) to denote
vectors and lower case Greek letters (like α, β, ξ1) to denote the scalars.
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Vector Spaces

These axioms were established by Italian mathematician Giuseppe Peano
(1858-1932) in his Calcolo Geometrico of 1888.

Peano calls V a “linear space.”

∗ picture taken from Google website
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Examples of Vector Spaces

The n-tuple space F n:

Example 7.

Let F be any field and let V be the set of all n-tuples

x = (α1, α2, . . . , αn)

of scalars αi in F . Then V is a vector space over F with respect to
coordinatewise addition and scalar multiplication, and it is denoted by
F n.
By “the vector space F n,” we mean F n over F .
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Examples of Vector Spaces

The sequence space F∞:

Example 8.

Let F be any field and let V be the set of all sequences

x = (α1, α2, . . .)

of scalars αi in F . Then V is a vector space over F with respect to
coordinatewise addition and scalar multiplication, and it is denoted by
F∞.
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Examples of Vector Spaces

The n-tuple space F n:

Example 9.

Let F be any field and let m and n be the integers. The set Fm×n of all
m × n matrices is a vector space over F with respect to componentwise
addition and scalar multiplication.

Note that F 1×n = F .

The zero vector is the zero matrix, whose entries are all zero.

We shall see that this space is almost the same as Fmn. The “mn”
components are arranged in a rectangle instead of a column.
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Examples of Vector Spaces

Notation :

When we say F n is a vector space, it is understood that F n is a vector
space over F .

If it is desirable to specify the field we shall mention the vector space with
the field (for instance, refer Example 14).
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Examples of Vector Spaces : The space of functions from a set to a field

Example 10.

Let F be any field and let S be any nonemtpy set. The set V of all
functions from the set S into F is a vector space over F with respect to
pointwise addition and scalar multiplication defined by

(f + g)(s) = f (s) + g(s) ; (αf )(s) = αf (s).

It is denoted by F S .

We observe that to define sum of two vectors f and g in V , we use “sum
of scalars” in F . Similarly, to define scalar multiplication in V , we use
“multiplication of scalars” in F . There is nothing special about the field
F . One can define “addition” and “scalar multiplicaiton” over the set of
all functions from a nonempty set S into a vector space, with the help of
“addition” and “scalar multiplication” defined on V .
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Examples of Vector Spaces

Exercise 11.

Show that the preceding Examples (7), (8) and (9) are special cases of the
Example (10).
[Hint : An n-tuple of elements in F may be regarded as a function from
the set S of integers 1, 2, . . . , n into F . Similarly, an m× n matrix over the
field F is a function from the set S of pairs of integers
(i , j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, into the field F .]

Example 12.

Let X be a non-empty set. Let V = F (X ,R) = {f : X → R} be the set of
real-valued functions on the set X . Then V is a vector space over R (by
Example (10).
Let F0(X ,R) denote the set of functions from X to R such that the set
{x ∈ X : f (x) 6= 0} is finite (this set may depend on f ). Thus,
f ∈ F0(X ,R) if and only if f (x) = 0 except for finitely many x ∈ X .
Clearly, F0(X ,R) is a subset of F (X ,R).
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Examples of Vector Spaces

The space of polynomial functions over a field F :

Example 13.

Let F be any field and let V be the set of all functions f from F into F
which have a rule of the form

f (x) = c0 + c1x + · · ·+ cnx
n

where c0, c1, . . . , cn are fixed scalars in F (independent of x).

A function of this type is called a polynomial function on F .

V is a vector space over F with respect to pointwise addition and scalar
multiplication.

The set of all functions from R to R is a vector space with respect to
pointwise addition and scalar multiplication and is denoted by F (R,R).
The zero vector in the space is the zero function.
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Examples of Vector Spaces

The following example illustrates that the same set of vectors may be
part of number of distinct vector spaces.

Example 14.

The field C of complex numbers may be regarded as a vector space over
the field R of real numbers. The vector space Cn over R is quite different
from the space Cn (over C) and the space Rn (over R).

Exercises 15.

(a) Let V denote the set of all polynomials exactly of degree n. Is it a
vector space under the usual addition and scalar multiplication of
polynomials ?

(b) Let V be the set of all solutions of a system of m homogeneous linear
equations in n variables with real coefficients. Is V a vector space
over R under obvious operations ?
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Examples of Vector Spaces

Example 16.

Let Ω be a fixed non-empty set and let V be the set of all subsets of Ω,
usually known as the power set of Ω.

Vectors are the elements of V , i.e., subsets of Ω.

We define the sum of two vectors A and B to be their symmetric difference

A∆B = (A− B) ∪ (B − A).

Here we consider the field consists only the scalars 0 and 1. Now we define
the scalar multiple αA to be A if α = 1 and ∅ (the emtpy set, or, the null
set) if α = 0.

The power set of Ω forms a vector space over F = {0, 1} with the addition
and scalar multiplication defined above.
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Examples of Vector Spaces

Example 17 (R over Q).

R with usual addition and multiplication is a vector space over the field of
rational numbers Q. The zero vector here is the real number 0 and the
negative of x is the real number −x .
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Exercises

Exercises 18.

(a) A sum involving a number of vectors is independent of the way in
which these vectors are combined and associated : Prove that if V is
a vector space over the field F , verify that

(x1 + x2) + (x3 + x4) = [x2 + (x3 + x1)] + x4

for all vectors x1, x2, x3 and x4 in V .
Such a sum may be written without confusion as x1 + x2 + x3 + x4.

(b) Let V be the set of all pairs (α, β) of real numbers, and let F be the
field of real numbers. Define

(α, β) + (α1, β1) = (α + α1, β + β1)

c(α, β) = (cα, cβ).

Is V, with these operations, a vector space over the field of real
numbers?
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Exercises

Exercises 19.

(a) On Rn, define two operations

x ⊕ y = x − y

α.x = −αx .

The operations on the right are the usual ones. Which of the axioms
for a vector space are satisfied by (Rn,⊕, .)?

(b) Let V be the set of pairs (α, β) of real numbers and let F be the field
of real numbers. Define

(α, β) + (α1, β1) = (α + α1, 0)

c(α, β) = (cα, 0).

Is V, with these operations, a vector space ?
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Exercises

Exercises 20.

(a) Let V be the set of all complex-valued functions f on the real line
such that (for all t in R)

f (−t) = f (t).

The bar denotes complex conjugation. Show that V , with the
operations

(f + g)(t) = f (t) + g(t)

(cf )(t) = cf (t)

is a vector space over the field of real numbers. Give an example of a
function in V which is not real-valued.
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Exercises

Exercises 21.

(a) Construct a subset of the xy -plane R2 that is

(i) closed under vector addition and subtraction, but not scalar
multiplication.

(ii) closed under scalar multiplication but not under vector addition.

(b) Let c be the set of all convergent real sequences. Prove that c is a
subset of R∞ (the set of all real sequences) and c is a vector space
with respect to coordinatewise operations.

(c) Let c0 be the set of null sequences (sequences converging to 0).
Prove that c0 ⊆ c ⊆ R∞ and c0 is a vector space with respect to
coordinatewise operations.
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Exercises

Exercises 22.

(a) Let C ([a, b]) be the set of all real-valued continuous functions on
[a, b]. This is a subset of F ([a, b],R). Show that C ([a, b]) is a vector
space over R.

(b) Show that the set D([0, 1]) of differentiable functions on [0, 1] is a
subset of C ([0, 1]) and it is a vector space under pointwise operations.

(c) Show that the set R([a, b]) of all Riemann integrable functions on
[a, b] is a subset of F ([a, b],R) and is a vector space.

(d) Recall that a function f : R→ R is called even (respectively odd) if
f (−x) = f (x) for all x ∈ R (respectively f (−x) = −f (x) for every
x ∈ R). Let F+(R,R) (respectively, F−(R,R)) denote the set of even
(respectively odd) functions from R to R. Are they vector spaces
under the obvious definitions?
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Exercises

Exercises 23.

Let V be a vector space. Prove the following simple facts.

(a) 0.x = α.0 = 0 ;

(b) −x is unique for a given x in V ;

(c) x + y = x + z =⇒ y = z ;

(d) x + x = x =⇒ x = 0 ;

(e) If α is a scalar and x a vector such that αx = 0, then either α is the
zero scalar or x is the zero vector ;

(f) If x is any vector in V , then

(−1)x = −x .
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Linear Combination

Definition 24.

A vector y in V is said to be a linear combination of the vectors
x1, x2, . . . , xn in V provided there exist scalars α1, α2, . . . , αn in F such
that

y = α1x1 + α2x2 + · · ·+ αnxn =
n∑

i=1

αixi .

Using the associative property of vector addition and distributive
properties of scalar multiplication, we get

n∑
i=1

αixi +
n∑

i=1

βixi =
n∑

i=1

(αi + βi )xi

c
n∑

i=1

αixi =
n∑

i=1

(cαi )xi .
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Linear Combination

A linear combination from a non-empty set A of vectors is a linear
combination of finitely many vectors belonging to A. As a matter of
convention, we define 0 to be the linear combination from the empty set.

We note that, whereas an expression
∑n

i=1 αixi determines a unique
vector, a vector may have different representations in the form

∑n
i=1 αixi .
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Linear Combination

Exercise 25.

If C is the field of complex numbers, which vectors in C3 are linear
combinations of (1, 0,−1), (0, 1, 1), and (1, 1, 1)?

Exercise 26.

Let A =

(
0 1
2 3

)
. Show that A2 =

(
2 3
6 11

)
is a linear combination

of A and I2 (the identity matrix of order 2).
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Linear Combination

Certain parts of linear algebra are intimately related to geometry.

We shall discuss now the origin of the “vector space”.

A vector is usually defined as a directed line segment PQ, from a point P
in the space to another point Q.

The vectors are determined by their length and direction. The directed line
segment PQ is the “arrow” from P to Q. Thus one must identify two
directed line segments if they have the same length and the same direction.
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Certain parts of linear algebra are intimately related to
geometry.

Let us consider the vector space R3. The directed line segment PQ, from
the point P = (x1, x2, x3) to the point Q = (y1, y2, y3), has the same
length and direction as the directed line segment from the origin
O = (0, 0, 0) to the point (y1 − x1, y2 − x2, y3 − x3).

Furthermore, this is the only segment emanating from the origin which
has the same length and direction as PQ. Thus, if one agrees to treat only
vectors which emanate from the origin, there is exactly one vector
associated with each given length and direction.

The vector OP, from the origin to P = (x1, x2, x3), is completely
determined by P, and it is therefore possible to identify this vector with
the point P. That is, each arrow OP can be represented by the point P
once the point O which is taken to be the origin.
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Certain parts of linear algebra are intimately related to
geometry.

Given points P = (x1, x2, x3) and Q = (y1, y2, y3), the definition of the
sum of the vectors OP and OQ can be given geometrically. If the vectors
are not parallel, then the segments OP and OQ determine a plane and
these segments are two of the edges of a parallelogram in that plane.
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Certain parts of linear algebra are intimately related to
geometry.

One diagonal of this parallelogram extends from O to a point S , and the
sum of OP and OQ is defined to be the vector OS .

The coordinates of the point S are (x1 + y1, x2 + y2, x3 + y3) and hence
this geometrical definition of vector addition is equivalent to the algebraic
definition of Example (8).

Scalar multiplication has a simpler geometric interpretation.

If c is a real number, then the product of c and the vector OP is the
vector from the origin with length |c| times the length of OP and a
direction which agrees with the direction of OP is c > 0, and which is
opposite to the direction of OP if c < 0.
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Certain parts of linear algebra are intimately related to
geometry.

In Physics we learn that a force applied at a point O has both magnitude
and direction. It is represented by an arrow OP, where the length OP
represents the magnitude and O to P the direction of the force. If we now
apply another force OQ at the point O, the resultant (also called the sum)
of the two forces is obtained by the parallelogram law : it is OR where
OPRQ is a parallelogram.
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Certain parts of linear algebra are intimately related to
geometry.

Also, if the strength of the force OP is doubled without changing the
direction, the nrew fore is OS where S is the point on the lie OP such
that OS = 2OP.

If the direction of the force OP is reversed without altering the magnitute,
the new force is OT where T is the point on OP such that OT = −OP
with the usual convention.
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Think Geometrically

One can probably make use of the vector space R3 by identifying a triple
(x1, x2, x3) of real numbers with the points in three dimensional Euclidean
space

to “think geometrically” about vector spaces ;

to illustrate and motivate some of the ideas in linear algebra.

Most often we look at R,R2 and R3 to understand the geometric meaning
underlying the concepts.

By introducing a coordinate system, we can identity the plane of
geometric vectors with R2; this was the great idea of Descartes’s Analytic
Geometry.
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Subspaces

One way of getting new vector spaces from a given vector space V is to
look at subsets S of V which form vector spaces by themselves. For
example, the points of R2 lying on the x-axis themselves form a vector
space and we call this a subspace of R2.

Definition 27.

Let V be a vector space over the field F . A subspace of V is a subset W
of V which is itself a vector space over F with the operations of vector
addition and scalar multiplication on V .

In other words, a subspace is a subset which is “closed” under additon
and scalar mutiplication. Those operations follow the rules of the host
space, without taking us outside the subspace.
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Subspaces

A subspace W of a vector space V forms a vector space over the same
field F under the operations: the restriction of “addition” to W ×W and
the restriction of “scalar multiplication” to F ×W . We denote the
restricted operations by the same symbols.

Example 28.

The following subsets of the vector space Rn form non-trivial subspaces of
Rn:

(a)
{

(x1, . . . , xn) : x1 = · · · = xm = 0 for any fixed m, 1 ≤ m < n
}

;

(b)
{

(x1, . . . , xn) : x1 + · · ·+ xn = 0
}

;

(c)
{

(x1, x2, x3) : 2x1 − 3x2 +
√

2x3 = 0, x1 − 5x3 = 0
}

when n = 3.
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Subspaces

Exercise 29.

Fix x0 ∈ X . Let S = {f : X → R|f (x0) = 0}. Then S is a vector subspace
of F (X ,R).

Example 30.

The following subsets of R form subspaces of R over Q:

(a) Q ;

(b)
{
x + y

√
2 + z

√
3 : x , y , z ∈ Q

}
.

Example 31.

If P ⊆ S ,
{
f : f ∈ F S and f (x) = 0 for all x ∈ P

}
is a subspace of F S .

Also the set of all continuous functions and the set of all differentiable
functions form subspaces of RR.
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Subspaces

Example 32.

(a) If 0 ≤ m ≤ n, Pm forms a subspace of Pn. Moreover, the subset of
even polynomials as well as the subset of odd polynomials form
subspaces of Pn. Note that

∑n−1
i=0 αi t

i is even or odd according as
αi = 0 whenever i is odd or even.

(b) Let x , y be two fixed vectors in a vector space V over F . Then
W = {αx + βy : α, β ∈ F} is a subspace of V .

(c) Consider the vector space, the power set of a set Ω over F = {0, 1}
with the operations defined earlier. For any nonempty subset A of Ω,
{∅,A} is a subspace. For any distinct non-emtpy subsets A and B of
Ω, {∅,A,B,A∆B} is another subspace.
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Subspaces

Note that a subspace W of a vector space is a vector space in its own
right. All nine rules of algebra do not need to be checked for a
subset of a vector space over F to become a subspace of V because
they are satisfied in the larger space and will automatically be
satisfied in every subspace.

Notice in particular that the zero vector will belong to every subspace.

Theorem 33.

A non-empty subset W of V is a subspace of V if and only if for each pair
of vectors x , y in W and each scalar α in F the vector αx + y is again in
W . LA-1(P-1)T-1
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Subspaces – Examples

1. The most extreme posibility for a subspace is to contain only one
vector, the zero vector. It is a “zero-dimensional space,” containing
only the zero vector. This is the smallest possible vector space.
Note that the empty set is not allowed.
At the other extreme, the largest subspace is the whole of the
original space - we can allow every vector into the subspace.
If V is any vector space, V is a subspace of V ; the subset consisting
of the zero vector alone is a subspace of V , called the zero subspace
of V . Both are called trivial subspaces.

2. If the original space is R3, then the possible subspaces are easy to
describe: R3 itself, any plane through the origin, any line through the
origin, or the origin (the zero vector) alone.

P. Sam Johnson (NIT Karnataka) Vector Spaces December 26, 2019 42 / 76



Subspaces – Examples

3. If F n, the set of n-tuples (x1, x2, . . . , xn) with x1 = 0 is a subspace ;
however, the set of n-tuples with x1 = 1 + x2 is not a subspace
(n ≥ 2).

4. The space of polynomial functions over the field F is a subspace of
the space of all functions from F into F .

5. An n × n (square) matrix A over the field F is symmetric if Aij = Aji

for each i and j . The symmetric matrices form a subspace of the
space of all n × n matrices over F .

6. An n × n (square) matrix A over the field C of complex numbers is
Hermitian (or self-adjoint) if AjK = Akj for each j , k , the bar
denoting complex conjugation.
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Subspaces

Exercises 34.

Which of the following are subspaces of R∞ ?

1. All sequences like (1, 0, 1, 0, . . .) that include infinitely many rows.

2. All sequences (x1, x2, x3, . . .) with xj = 0 for some point onward.

3. All convergent sequences.

4. All geometric progression (x1, kx1, k
2x1, . . .) allowing all k and x1.
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Smallest Subspace Containing a Set

The distinction between a subset and a subspace is made clear by
examples: Consider all vectors whose components are positive or zero. If
the original space is the xy -plane R2, then this subset is the first quadrant;
the coordinates satisfy x ≥ 0 and y ≥ 0. It is not a subspace, even though
it contains zero and addition does leave us within the subset.

If c = −1 and x = (1, 1), the multiple cx = (−1,−1) is in the third
quadrant instead of the first. If we include the third quadrant along with
the first, then scalar multiplication is all right; every mutiple cx will staty
in this subset, however the addition of (1, 2) and (−2,−1) gives a vector
(−1, 1) which is not in either quadrant.

The smallest subspace containing the first quadrant is the whole space
R2.
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Subspaces

If we start from the vector space of 3 by 3 matrices, then one possible
subspace is the set of lower triangular matrices.

Another is the set of symmetric matrices. In both cases, the sums
A + B and the multiples cA inherit the properties of A and B. They are
lower triangular if A and B are lower triangular, and they are symmetric if
A and B are symmetric.

Of course, the zero matrix is in both subspaces.

Exercise 35.

What is the smallest subspace of 3× 3 matrices that contains all
symmetric matrices and all lower triangular matrices? What is the largest
subspace that is contained in both of those subspaces?
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Subspaces – Exercises

Exercises 36.

1. A real matrix A = (Ai j), 1 ≤ i , j ≤ n is aaid to be symmetric if
aij = aji for all 1 ≤ i , j ≤ n. Let Sn denote the set of all n × n
symmetric real matrices. Then under the operations of matrix
addition and scalar multiplicaition, Sn is a vector space.

2. A real matrix A = (Ai j), 1 ≤ i , j ≤ n is aaid to be skew-symmetric if
aij = −aji for all 1 ≤ i , j ≤ n. If An denotes the set of all
skew-symmetric matrices, then An is a vector space under obvious
addition and scalar multiplicaition. Note that both Sn and An are
subsets of M(n,R).
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Subspaces – Exercises

Exercises 37.

1. Write a general form of an 2× 2 complex Hermitian matrix.

2. Check whether the set of all complex Hermitian matrices, a subspace
of the space of all n × n matrices over C.

3. Check whether the set of all n × n complex Hermitian matrices, a
subspace of the space of all n × n matrices over C.

4. Check whether the set of all n × n complex Hermitian matrices, a
subspace of the space of all n × n matrices over R.

Exercises 38.

1. Show that the polynomials (in one variable) of degress ≤ 2, of the
form f (x) = a + bx + cx2, are a subspace of F (R,R).

2. Show that the differentiable functions form a subspace of F (R,R).
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Subspaces – Exercises

Exercises 39.

1. C∞ (the smooth functions, that is, we can differentiate as many
times as we want) is a subspace of F (R,R). This subspace contains
all polynomials in one variable, exponential functions, sin x and cos x ,
for example.

2. P (the set of all polynomials in one variable) is a subspace of F (R,R).

3. Pn (the set of all polynomials in one variable of degree ≤ n) is a
subspace of F (R,R).

4. Show that the matrices B that commute with A =

(
0 1
2 3

)
form a

subspace of R2×2. In general, show that the n × n matrices B that
commute with any given n × n matrix A form a subspace of Rn×n.
The degree of zero polynomial may be defined as −∞.

5. Consider the set W of all non-invertible 2× 2 matrices. Is W a
subspace of R2×2 ?
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Subspaces

Geometrically, think of the usual three-dimensional R3 and choose any
plane through the origin. That plane is a vector space in its own right.

If we multiply a vector in the plane by 3, or −3, or any other scalar, we get
a vector which lies in the same plane. If we add two vectors in the plane,
their sum stays in the plane.

This plane illustrates one of the most fundamental ideas in the theory of
linear algebra; it is a subspace of the original space R3.
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Subspaces – Examples

Exercise 40.

The solution space of a system of homogeneous linear equations.
Let A be an m× n matrix over F . Prove that the set of all n× 1 (column)
matrices X over F such that AX = 0 is a subspace of the space of all
n × 1 matrices over F .

Lemma 41.

If A is an m × n matrix over F and B,C are n × p matrices over F , then

A(dB + C ) = d(BC ) + AC

for each scalar d in F .
Similarly, one can show that (dB + C )A = d(BA) + CA, if the matrix
sums and products are defined. LA-1(P-2)L-2
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Subspaces

Theorem 42.

Let V be a vector space over the field F . The intersection of any
collection of subspaces of V is a subspace of V . LA-1(P-2)T-3

Exercise 43.

What about the union of any collection of subspaces of V ?

From Theorem (42) it follows that if S is any collection of vectors in V ,
then there is a smallest subspace of V which contains S . That is, the
smallest subspace of V containing S is a subspace which contains S and
which is contained in every other subspace containing S .
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Subspace spanned by a set

Definition 44.

Let S be a set of vectors in a vector space V .
The subspace W spanned by S is defined to be the intersection of all
subspaces of V which contain S and it is denoted by Sp(S). The set S is
called a generating set of the subspace W = Sp(S).

When S is a finite set of vectors, S = {α1, α2, . . . , αn}, we shall simply
call W the subspace spanned by the vectors α1, α2, . . . , αn.

Theorem 45.

The subspace spanned by a non-empty subset S of a vector space V is the
set of all linear combinations of vectors in S . That is,

Sp(S) =
{ k∑

i=1

αixi : xi ,∈ S , αi ∈ F , 1 ≤ i ≤ k and k is a postive integer
}
.

Note here that k, αi , xi are all arbitrarily chose from their respective domains. LA-1(P-3)T-4
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Subspace spanned by a set

Exercise 46.

For any subsets A and B of a vector space V , prove that

(a) A is a subspace of V iff A = Sp(A) ;

(b) If A ⊇ B, then Sp(A) ⊇ Sp(B) ;

(c) Sp(Sp(A)) = Sp(A).

Exercise 47.

(a) Say true or false : If A ⊆ B and Sp(A) ⊇ B, then Sp(A) = Sp(B).

(b) Can it happen that Sp(S ′) = Sp(S), for subsets S ′ ⊆ S ⊆ V ?
Illustrate with an example or an argument.
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Subspace spanned by a set

Exercise 48.

Let v and {vi}ni=1, be vectors in a vector space V .

Let S ′ = {vi}ni=1 and S = {v} ∪ S ′.

Then L(S ′) = L(S) if and only if there exist scalars αi ∈ R, 1 ≤ i ≤ n,
such that

v =
n∑

i=1

αivi .

In particular, we see that v ∈ L({v1, . . . , vk}) if and only if

L({v1, . . . , vk}) = L({v , v1, . . . , vk}).
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Subspace spanned by a set

The following figure illustrates the geometric meaning of linear
combination of u, v in R2. Sp{u, v} creates a mesh.
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Sum of Subspaces

Definition 49.

If S1,S2, . . . ,Sk are subsets of a vector space V , the set of all sums

α1 + α2 + · · ·+ αk

of vectors αi in Si is called the sum of the subsets S1,S2, . . . ,Sk and is
denoted by

S1 + S2 + · · ·+ Sk

or by
∑n

i=1 Si .

If W1,W2, . . . ,Wk are subspaces of V , then the sum

W = W1 + W2 + · · ·+ Wk

is easily seen to be a subspace of V which contains each of the subspaces
Wi . From this it follows, that W is the subspace spanned by the union of
W1,W2, . . . ,Wk .
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Sum of Subspaces

Let V ,W be vector spaces. Let us form the Cartesian product V ×W .
Define addition and scalar multiplication on V ×W as follows :

(v1,w1) + (v2,w2) = (v1 + v2,w1 + w2)

α(v ,w) = (αv , αw),

where (vi ,wi ) ∈ V ×W , i = 1, 2, α ∈ R, (v ,w) ∈ V ×W .

Then V ×W is a vector space. This vector space is usually denoted by
V ⊕W and called direct sum of V and W .

Exercise 50.

Extend the construction to define the directo sum V1 ⊕ · · · ⊕ Vn of n
vector spaces Vi , 1 ≤ i ≤ n.
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Sum of Subspaces

Example 51.

Let F be a subfield of the field C of complex numbers.

Suppose α1 = (1, 2, 0, 3, 0), α2 = (0, 0, 1, 4, 0) and α3 = (0, 0, 0, 0, 1).

The following are equivalent:

The subspace W of F 5 spanned by α1, α2, α3.

W =
{
α = (c1, 2c1, c2, 3c1 + 4c2, c3) : c1, c2, c3 ∈ F

}
.

W =
{
α = (x1, x2, x3, x4, x5) : x2 = 2x1, x4 = 3x1 + 4x3

}
.
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Sum of Subspaces

Example 52.

Let F be a subfield of the field C of complex numbers and let V be the
vector space of all 2× 2 matrices over F .

Let W1 =
{( x y

z 0

)
: x , y , z ∈ F

}
and W2 =

{( x 0
0 y

)
: x , y ∈ F

}
.

Then

W1 and W2 are subspaces of V .

V = W1 + W2.

W1 ∩W2 =
{( x 0

0 0

)
: x ∈ F

}
.
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Column space - An Example of a Subspace

We now see key examples of subspaces through matrices. They are tied
directly to a m × n matrix A, and they give information about the system
Ax = b.

The column space contains all linear combinations of the columns of A
and it is denoted by C (A). The system Ax = b is solvable iff the vector b
can be expressed as a combination of the columns of A. Then b is in the
column space.

Example 53.

The matrices A =

 1 0
5 4
2 2

 and B =

 1 0 1
5 4 9
2 2 4

 have the same

column spaces.
Note that the third column of B is the sum of first and second columns of
B.
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Row Space of Matrix

Example 54.

Let A be an m × n matrix over a field F . The row vectors of A are the
vectors in F n given by

αi = (Ai1,Ai2, . . . ,Ain), i = 1, 2, . . . ,m.

The subspace of F n spanned by the row vectors of A is called the row
space of A.
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Nullspace : Another Example of a Subspace

The nullspace of a matrix consists of all vectors x such that Ax = 0
(i.e., the set of solutions to Ax = 0). It is denoted by N(A).

If Ax = 0 and Ay = 0, then A(x + y) = 0.

If Ax = 0, then A(cx) = 0.

As both requirement are satisfied, N(A) is a subspace of Rn.

Note that both requirements fail if the right-hand side is not zero!
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Space of Polynomial Funcions

Example 55.

Let V be the space of all polynomial functions over F . Let S be the
subset of V consisting of the polynomial functions f0, f1, f2, . . . defined by

fn(x) = xn, n = 0, 1, 2, . . . .

Then V is the subspace spanned by the set S .
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Applicaton of Linear Algebra in Finding Solution Space of
Differential Equation

Consider the differential equation (DE)

f ′′(x) + f (x) = 0 (or) f ′′ = −f (x). (1)

A solution (1) is a function f (x) whose second derivative is the negative of
the function itself.

For example, “sin x” and “cos x” are solutions of (1).
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Applicaton of Linear Algebra in Finding Solution Space of
Differential Equation

Can we find any other solutions ?

Note that the solution set of this DE is closed under addition and under
scalar multiplication.

It follows that all “linear combinations”

f (x) = c1 sin x + c2 cos x (2)

The following exercise shows that every solution of 1 is of the form 2.
Thus the functions “sin x” and “cos x” span the solution space V of the
DE f ′′(x) = −f (x).
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Applicaton of Linear Algebra in Finding Solution Space of
Differential Equation

Exercise 56.

(a) Show that if g(x) is in V , then the function (g(x))2 + (g ′(x))2 is
constant. [Hint : Consider the derivative.]

(b) Show that if g(x) is in V with g(0) = f ′(0) = 0, then g(x) = 0 for
all x .

(c) If f (x) is in V , then g(x) = f (x)− f (0) cos x − f ′(0) sin x is in V as
well. Verify that g(0) = 0 and g ′(0) = 0.

We can conclude that g(x) = 0 for all x , so that

f (x) = f (0) sin x + f ′(0) cos x .

It follows that the functions “sin x” and “cos x” span V , as claimed.
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Solution Space of Differential Equation

Since the solution set V of the DE (1) is closed under addition and scalar
multiplication, we can say that V is a “subspace” of F (R,R).

Even there are infinitely many solutions, using the language of linear
algebra, we can conclude that the functions “sin x” and “cos x” form a
“basis” of the “solution space” V , so that the “dimension” of our DE is 2.

Thus, the solutions of our DE form a two-dimensional subspace of F (R,R)
with basis “sin x” and “cos x”.

P. Sam Johnson (NIT Karnataka) Vector Spaces December 26, 2019 68 / 76



Exercises

Exercises 57.

(a) Which of the following set of vectors α = (a1, a2, . . . , an) in Rn are
subspaces of Rn (n ≥ 3) ?

(i) all α such that a1 ≥ 0 ;
(ii) all α such that a1 + 3a2 = a3 ;
(iii) all α such that a2 = a2

1 ;
(iv) all α such that a1a2 = 0 ;
(v) all α such that a2 is rational.

(b) Let V be the (real) vector space of all functions f from R to R.
Which of the following sets of functions are subspaces of V ?

(i) all f such that f (x2) = f (x)2 ;
(ii) all f such that f (0) = f (1) ;
(iii) all f such that f (3) = 1 + f (−5) ;
(iv) all f such that f (−1) = 0 ;
(v) all f which are continuous.
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Exercises

Exercises 58.

(a) Is the vector (3,−1, 0,−1) in the subspace of R5 spanned by the
vectors (2,−1, 3, 2), (−1, 1, 1,−3), and (1, 1, 9,−5) ?

(b) Let W be the set of all (x1, x2, x3, x4, x5) in R5 which satisfy

2x1 − x2 + 4
3x3 − x4 = 0

x1 + 2
3x3 − x5 = 0

9x1 − 3x2 + 6x3 − 3x4 − 3x5 = 0.

Find a finite set of vectors which spans W .
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Exercises

Exercises 59.

(a) Let F be a field and let n be a positive integer (n ≥ 2). Let V be the
vector space of all n × n matrices over F . Which of the following sets
of matrices A in V are subspaces of V ?

(i) all invertible A ;
(ii) all non-invertible A ;
(iii) all A such that AB = BA, where B is some fixed matrix in V ;
(iv) all A such that A2 = A.

(b) (i) Prove that the only subspaces of R1 are R1 and the zero subspace.
(ii) Prove that a subspace of R2 is R2, or the zero subspace, or consists of

all scalar multiples of some fixed vector in R2. (The last type of
subspace is, intuitively a straight line through the origin.)

(iii) Can you describe the subspaces of R3?
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Exercises

Exercises 60.

(a) Let W1 and W2 be subspaces of a vector space V such that the
set-theoretic union of W1 and W2 is also a subspace. Prove that one
of the spaces Wi is contained in the other.

(b) Let V be the vector space of all functions from R into R ; let Ve be
the subset of even functions, f (−x) = f (x) ; let Vo be the subset of
odd functions f (−x) = −f (x).

(i) Prove that Ve and Vo are subspaces of V .
(ii) Prove that Ve + Vo = V .
(iii) Prove that Ve ∩ Vo = {0}.

(c) Let W1 and W2 be subspaces of a vector space V such that
W! + W2 = V and W1 ∩W2 = {0}. Prove that for each vector α in
V there are unique vectors α1 in W1 and α2 in W2 such that
α = α1 + α2.
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Exercises

Exercises 61.

(a) Let X := {∗} be a singleton set and let V be a vector space. Let
W = {∗} × V . We can turn W into a vector space as follows:

(∗, v1) + (∗, v2) = (∗, v1 + v2)

α(∗, v) = (∗, αv),

where v1, v2 ∈ V , α ∈ R, v ∈ V .

(b) V := Q. On Q we have a natural addition, namely, the addition of
rationl numbers. However, if α ∈ R is irrational and r ∈ Q then
αr ∈ R but not in Q. Then V is not a vector space over R.
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Exercises

Exercises 62.

Let Pi , 1 ≤ i ≤ n be continuous functions on [a, b] ⊆ R. Let V be the set
of n-times continuously differentiable solutions f on [a, b] of a linear
differential equation

y (n) + P1(x)y (n−1) + · · ·+ Pn(x)y = 0.

The set V of solutions of the differential equation is a vector space with
pointwise operations.
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Additional Exercises

Students are encouraged to go through the exercises given in the following
textbooks.

Text Book Pages
“Linear Algebra with Applications“ 162,163
by Otto Bretscher

“Linear Algebra” 21, 22
by A. Ramachandra Rao and P. Bhimasankaram 28,29,30
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